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ABSTRACT

The distortion of flames in flows with vortical motion is examined via asymptotic analysis and
numerical simulation. The model consists of a constant-density, one-step, irreversible Arrhenius
reaction between initially unmixed species occupying adjacent half-planes which are then allowed
to mix and react in the presence of a vortex. The evolution in time of the temperature and mass-
fraction fields is followed. Empbhasis is placed on the ignition time and location as a function of
voriex Reynolds number and initial temperature differences of the reacting species. The study
brings out the influence of the vortex on the chemical reaction. In all phases, good agreement is
observed between asymptotic analysis and the full numerical solution of the model equations.
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1. INTRODUCTION

In a seminal paper, Marble (1985) developed a simple model problem which describes the distortion
of a diffusion flame by the presence of a viscous vortex flow, as might be found in the large scale structures
of turbulent diffusion flames. Assuming fast chemical kinetics and the constant density approximation, a
flame sheet exists at time zero separating a region of fuel in the upper half plane and a region of oxidizer in
the lower half plane. As time increases, the flame sheet is allowed to evolve by diffusion and convection
and is wound up by the vortex flow field. The analysis was based on the assumption that the flame elements
are locally strained and sheared, but that the shearing motion was unimportant and hence could be
neglected. Theoretical analysis shows that (i) the vortex field increases the rcactant consumption, (ii) the
reaction rate is independent of time, (iii) a similarity rule for the core radius growth exists, and (iv) a simi-
larity rule exists for the reactant consumption rate.

The analytical problem posed by Marble (1985) (henceforth called the Marble problem) has been
solved numerically by Laverdant and Candel (1988) and Rehm, Baum, Lozier and Aronson (1989), but
without the strain-shear approximation. Thus the complete flow ficld was considered. Laverdant and Candel
(1988) solved the Marble problem by an implicit finite difference scheme. They verified numerically
Marble’s similarity rule for the core radius growth and the result that the reaction rate is independent of
time, and also verified the correctness of the shear approximation. In addition, the effect of varying the
stoichiometric (or equivalence) parameter was also studied. They showed that the core is mostly surrounded
by the oxidizer when the sloichiomeltric parameter is less than unity (fuel lean), and is mostly surrounded by
the fuel when it is greater than unity (fuel rich). Rehm, et al. (1989) solved the Marble problem by first
transforming the sysiem into a Lagrangian coordinate system. Then assuming a similarity solution, the
resulting problem was solved analytically using Fourier series. The Fourier amplitudes were determined by
either a two-point boundary-value solver, valid for all values of the independent parameters, or in the
asymptotic limit of large Schmidt number (as might be more appropriate for liquids than for gases). The
results of this study confirmed the behaviour of the numerical solution of Laverdant and Candel (1988), as
well as the dependency of the reactant consumption rate found by Marble (1986). Norton (1983) also
solved the Marble problem with the strain-shear approximation, but using finite rate chemistry instead of the
flame sheet approximation, confirming the results of Marble.

Many extensions of the Marble problem exist, each utilizing the same analytical approach as that of
Marble (1985) and assuming the fast chemistry limit, some of which are briefly reviewed here. Karagozian
and Marble (1986) considered the time dependent interaction of a diffusion flame with an axially strained
vortex in the third dimension. It was shown that the main conclusions for the three dimensional vortex field
remains formally identical to the two dimensional vortex field (the Marble problem). In addition, density
effects were shown to be small. Karagozian and Manda (1986) considered the distortion of a two dimen-
sional fuel strip in the presence of a pair of counter-rotating vorticies. The fuel strip was assumed either
infinite or semi-infinite in extent, separated from the oxidizer by two flame sheets. On each flame sheet
resides a vortex, which are allowed to rotate in opposite directions. The semi-infinite fuel strip is particu-
larly relevant to the vortical flame structure formed at a circular orifice or nozzle. Cetegen and Sirignano
considered the interaction of a diffusion flame with a single vortex (1987) and the interaction with an
infinite row of two dimensional vortices, which is representative of the temporal growth of a mixing layer
before pairing has occurred (1988). In both cases, the emphasis was on the construction of the concentration
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profiles in the vortical structure, as well as, the construction of the probability density functions (pdfs). A
review of these two cases can be found in Sirignano (1989). Peters and Williams (1988) developed an
analogous problem for a premixed flame, relevant for describing premixed turbulent combustion in large
scale structures. The emphasis of this study was in describing the growth of the reacted core, flame extinc-
tion by stretch for Lewis numbers greater than unity, and the effect of heat release.

Tn another seminal paper, Linan and Crespo (1976) examined the structure of a diffusion flame in the
unsteady mixing of two half spaces of fuel and oxidizer. By using a combination of large activation energy
asymptotics and numerics, they analyzed the continuous evolution from nearly frozen flow 1o near equili-
brium flow and showed that three laminar regimes exist within the flow; the ignition, deflagration, and
diffusion flame regimes. The ignition regime is a region where the combustible gases mix until, at some
finite time, a thermal explosion occurs at a well defined location and the gas is ignited. The second regime
is the deflagration region. After ignition, a pair of deflagration waves (or "premixed flamelets") emerge
according to classical thermal explosion theofy. These waves arise because the mixture is pot stoichiometric
in the premixed region. One of the reactants is consumed locally, leaving behind an excess of the other
reactant. Thus, one of the flamelets is fuel-rich and the other is fuel-lean. There is excess fuel behind the
fuel-rich flamelet and excess oxidizer behind the fuel-lean flamelet. Concentration gradients behind the
flamelets drive the unbumnt fuel and oxidizer towards the diffusion flame where they are consumed locally.
These premixed flamelets are quite weak in that the temperature rise associated with them is smail, and they
exist only until all of the deficient reactant is consumed. Just beyond the deﬂagrauon waves, a diffusion
flame regime exists where the mixing process is governed by diffusion in the direction normal to the flame,
As time increases, the diffusion flame approaches a flame sheet. We note that the existence of a well
defined ignition point and the premixed flamelets depends critically on the relative magnitudes of the two
initial temperatures (o that of the adiabatic diffusion flame temperature. That is, if the adiabatic diffusion
flame temperature is greater than either initial temperature, a well defined ignition point always occurs, fol-
lowed by the premixed flamelets. On the other hand, if the adiabatic diffusion flame temperature is between
the two initial temperatures, there is no well defined ignition point, and a single premixed flame merges
smoothly into the diffusion flame. The analytical results of Linan and Crespo were extended by Jackson and
Hussaini (1988) and Grosch and Jackson (1991) in their studies of steady supersonic combustion in
compressible laminar mixing layers. In particular, the three flame regimes also exist at high speeds provided
the adiabatic diffusion flame temperature is greater than either freestream temperature. Finally, we note that
this configuration of two flamelets and a diffusion flame (collectively called a tribrachial flame) has also
been observed in the propagation of a premxxcd flame into a nonuniform mixture (e.g., Buckmaster and

Matalon, 1988).

Our goal is. Lo combme the models of Marble (1985) and Linan and Crespo (1976). That is, we pro-
pose to investigate Lhe continuous evolution of mmally unmlxsd species occupying adjacent half planes to
near equilibrium flow in the presence of a viscous vortex without invoking the fast ‘chemistry limit.
Emphasis is placed on the ignition time and location as a function of voriex Reynolds number and initial
temperature differences of the reacting species. In the next section we state the problem. Section 3 presents
an analysis of the ignition regime using a combination of large activation energy (and hence Zeldovich
number) asymptotics and numerics. Section 4 presents a simple model problem for the diffusion flame
regime describing the viscous core region about the flame sheet, and identifies certain physical effects by
employing asymptotic expansions and numerical solutions. The full equations are then solved numerically
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in section 5. Comparisons between asymptotics and numerics are given through out the study. Finally, our
conclusions are presented in section 6.

2. EQUATION FORMULATION

In this section the problem for the time evolution of initially unmixed species occupying adjacent
half-planes which are then allowed to mix and react in the presence of a vortex is stated. The nondimen-
sional equations, boundary conditions and initial conditions governing this field in cylindrical coordinates

are
U =0, V= RrSC [1 - exp(-r2/41 Sc)], (2.1a)
|4 2
T,+7T9=V T+BQ, (2.1b)
1% ) .
Fj,f + ';‘F,’e= V F] "Q, ] = 1,2, (2.1C)
Q=DaF F,e™®'T, (2.1d)
T=F,=1F,=0 at t=0,r>0,0<8<m and t >0,r 5, 0<B<m, (2.2a)
Fy_ O
T=B;,F =0,F,= F =¢ a t=0,r>0,1<06<2m,
1,00

and t >0,7r 5o, T<BO<2m, (2.2b)

where (U, V) are the radial and angular velocity components, respectively; VZ is the two-dimensional Lapla-
cian operator in cylindrical coordinates; T is the temperature; and F and F, the mass fractions. The chemi-
cal model is a one-step irreversible Arrhenius reaction, and the vortex model is an Oseen vortex with circu-
lation I". The nondimensional parameters appearing above are the vortex Reynolds number R, defined as
I'/ 2wv where v is the kinematic viscosity; the Schmidt number Sc = v/D assumed equal for both species
and D is the species diffusion coefficient; the Zeldovich number Ze = E /(R° T..) with E the dimensional
activation energy and R° the universal gas constant; the Damkohler number Da defined as the ratio of the
characteristic diffusion time scale to the characteristic chemical time scale; B the heat release per unit mass
of F|; the equivalence ratio ¢ defined as the ratio of the mass fraction F, to the mass fraction F, divided
by the ratio of their molecular weights times their stoichiometric coefficients; and finally B, the ratio of the
initial temperatures. If ¢ = 1, the mixture is said to be stoichiometric, if ¢ > 1 it is F, rich, and if < 1, it
is Fy lean. Also, if Br is less than one, F, is relatively cold compared to F,, and if By is greater than one it
is relatively hot. The temperature and mass fractions were nondimensionalized by the values T, and F, ..,
respectively. The velocities were nondimensionalized by U,, some characteristic speed. Lengths and times
are referred to the relevant diffusion characteristic scales I, =A/pC, U, and I;/U, of the flow,
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respectively, where p is the density assumed constant, A is the thermal conductivity, and C, is the specific
heat at constant pressure. Finally, the assumption of unit Lewis number is made, so that S¢ = Pr, where Pr

is the Prandtl number.

3. IGNITION REGIME

At time ¢ = 0, the reaction rate is exactly zero owing to the product F F, = 0. For ¢ > 0, the fuel and
oxidizer begin to mix by diffusion, as well as by convection due to the pfeécnce of the vortex, and the reac-
tion rate is no longer zero. For small time, it can reasonably be assumed that the effect of the reaction is
small, and in the absence of reaction term the system (2.1) reduces to

7, + B5C (1 - exp(~r2/41 SN To = VT, (.1a)
r

Fpy + B5C 11— exp(-r2i41 Se)Fy o= VIF;,  j =12 (3.1b)
r

The above system must be solved numerically subject to the conditions (2.2), and its solutions are referred

to as the inert solutions, denoted by

T, = T;(r,0,1), Fj =F; (r,8,1), j=12 (32

__As time_increases, more of the combustible mixes until, at some finite time, a thermal explosion occurs

characterized by significant departure from the inert.

To analyze the ignition process, we determine the effect of the growing reaction rate by expanding

about the inert solution as

T=T, + Ze™! T, Fj =0y +Z€_1Fj’1 j =12, (3.3)

and take the asymptotic limit Ze — oo. Subsliiuting into (2.1), we see that the left hand sides are 0(Ze™)

while the right hand Asides are O (Da e_ze/T'), where T. = max(T;). In order to balance these terms, Da

‘must therefore have the form
1 ziT. : : :
Da=——e . 3.4)

Substituting intb'(2.fb) yields the following equation for T, -

Ty, + R—fﬁ [1-exp(—r2/4tSc)T o= VT, -
r ERREE e L imeeez —mmRs nTm oz s

T; + Ze (T; -WT.) ] (3.5)

+ [F,; +Ze'F F,, +Ze'F, ] ex
[Fi4 1 [Fa 2,11 P{ .0, + ZeTy)

1 ——————— | [ IR PR
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which must be solved subject to the initial and boundary conditions
T;=0 a t=0,r>0,0<0<2n, and +>0,r 5 ,0<6<2m, (3.6)

Once T, is known, the mass fraction pertarbations can be found directly from (2.1c). Note that the right
hand side of (3.5) is exponentially small except where |T; — 7. | = O (Ze™). There are now two cases to
consider, depending upon the magnitude of the parameter |1 — Br|. In this section we only consider the case
of nearly equal initial temperatures (By = 1), and will postpone the .analysis for O(1) initial temperature
differences as a topic for future research.

As mentioned above, only the important case of ignition for néarly equal initial iemperatures of the
fuel and oxidizer is considered. To this end, we set

Br=1+2Ze"'Br, 3.7
with By fixed and O (1). With this choice, the inert temperature T; is given by

T, =1+27T;, (3.8)
where T; ; satisfies (3.1a) subject to the initial and boundary conditions

T,,=0 at 1=0,r>0,0<0<m and ¢t >0,7 9 9,0<6<m, (3.9a)

T, 1 =PBr at t=0,r>0,1208<2m and >0, 7r 5o, T<B<2m. (3.9b)

Substituting into (3.5), together with the asymptotic choice T. = 1, yields the following equation for the dis-
turbance temperature

Tl“Tl,x

Ty, + B_f_c [1—exp(-r2/4¢ ST 8= VT, + FiiFo e 3.10)
r

subject to the conditions (3.6). This equation was solved numerically for a range of R and By with
Sc = ¢ = 1. Implementation of boundary conditions are facilitated if the system is recast in Cartesian coor-
dinates. The solution technique is a 2nd-order finite difference scheme on a nonuniform mesh. To resolve
the structure in the core region of the field, a coordinate stretching of the form

c,-1 |
Yo = 2 Ymax Ye (311)

is used, where y, € [—Ymax, Ymax] i8 the physical coordinate, y, € [-1,1] is the computational coordinate,
and C, and C, are adjustable constants. The smaller the quantity (C, - 1), the stronger the stretching. In
the y direction, C, is either 4 or 2, and C, is 2. A similar stretching is used in the x direction, with C{ =4
and C, = 2. To avoid the singularity at the origin, no mesh points are placed there. The outer boundaries
are set at 50 or 200 for x e, and 20 or 50 for y,,. Grid resolution studies which at least doubled the com-
putational mesh were carried out to ensure that structures were well resolved. The resolutions required



L "
! 1

ST

il

[Tl

li

AT 1 I A

-6-

ranged from a 642 mesh to a 2562 mesh for large vortex Reynolds number (R = 5000). The time-stepping
scheme is a four-stage Runge-Kutta which is formally 2nd-order but has an extended stability region making
it accurate and robust for moderately siff problems. All runs were performed interactively on a Cray YMP.

As ¢ increases, the solution for T; becomes unbounded at some finite time (¢, ) and location (x;; , yig ).
This characterizes the ignition regime. The special case R = 0, in which two initially unmixed species are
allowed to d'iff"use' without the mixing generated by the vortex, corresponds to the results of Linan and
Crespo (1976). To verify the solution techmque described above, we give a comparison of our results to
that of Linan and Crespo in Table I For this case 1gmnon takes place ‘along a line parallel to the x-axis
which is located at y = 0 for B = 0 and resides in the hotter region for By #0.

The effects of the voriex can be seen Byﬁexamining Fi;gureé 1 arnfdr2 and Table II. Figure 1 is a plot
of the ignition times 1, versus the vortex Reynolds number R for three values of Br with Sc = ¢ = 1.
Table 11 contains selwted ignition times as a function of R for the three values of Br of Figure 1. The
effect of increasing By from zero (ie., Py > 1) is to enhance ignition, while decreasing BT from zero (i.e.,
Br < 1) has the opposite effect. One can see from Figure 1 and Table II that the vortex Reynolds number
has little effect on the overall ignition time. However, ignition now occurs at a point rather than along an
entire line. This effect is shown in Figure 2 whcre the ignition locations y;, versus x;, are plotied for vari-

“ous values of R and BT = -2. Note that as R increases, the ignition location spirals clockwise towards the

viscous core center. Ignition is seen 10 occur wuhm the core for vortex Reynolds numbers R > 70. This is
in contrast to the case of equal initial Lempératures (BT =0), where ignition always occurs at the origin for
any valuc of R . The analogous plot for By = 2 has essentially the same characteristics as Figure 2. In sum-
mary, ignition occurs in the region of the initially hotter reactant for small R, and spirals clockwise towards
the viscous core center as R increases.

Figure 2 indicates that the ignition location is at its maximum from the center of the vortex at approx-
imately R = 28. Surface plots of T, and F, ; shown in Figures 3a,b, respectively, display the skewed struc-
ture of the reaction core at these conditions. The devclopmem of the hot spot for By = —2 as a function of
increasing R is shown in the contour plots of Ty and F 1,4 0 Flgures 4 and 5, respectively. The structure of
the reaction core develops from an asymmemcally skewed center (Figures 4a-c) to an axisymmetric center
(Figure 4d). However, the local structure of the hot spot within the reaction core is axisymmetric for any
value of the vortex Reynolds number greater than zero. This fact is more clearly seen in Figure 6 where we
plot T, versus y at the ignition location x;, and time t;; corresponding to the same conditions given in Fig-
ure 4. From this [igure it is clear that once the hot spot develops within the reaction core, it is axisym-
metric.

For completeness, a contrast of the effects of a potential vortex distribution (V = R Sc /r) versus the
Oseen vortex, given in (2.1a), on the ignition locations are made. Figure 7 is a plot of y;, versus x,, for the
potential vortex for the same conditions as in Figure 2. Note that the collapse of the spiral into the center

occurs for R > 7, as opposed to the value R > 70 for the Oseen vortex.

The numerical solutions presented above suggests that near thermal runaway, a hot spot develops at
(r;¢+9i¢) within the reaction core and that the structure of this hot spot is axisymmetric (see Figure 6). Thus,
convection is not important and the local slrucggeﬁqf the hot spot is diffusion controlled. In this case, Dold

(1985, 1989) has shown that the proper scalings characterizing the local structure of the hot spot are given
by

11008111
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x =1, 080, +(1)scosB, y=rysinb, +n()ssind, T=1, -1, (3.12)
where
Wi = 1[0~ In(Q; 7] = 18, (3.13)

. T, . .
as T — 0, with Q;, = F; ; Fy ;e "' evaluated at (r,0,¢) = (rig»0ig, i), and « is a constant determined by

matching with the initial conditions and is a function of the parameters (R,Sc,¢). With these scalings, and
ignoring all dependence on 8, the asymptotic form of T, in the hot spot is given by

InE 5+4 s5%/4
T,=-In Q,-r—ln1+s2/4——§————
! (2 1) ( ) E 2 1+s5%4
1] 1+4 s2/4 2 I’ ¢
+ = - In(l+s“/4) |+ 0 , 3.14
3 2 T+3%/a (1 +s5°/4) (52) (3.14)

with # =0 if r, #0 or # =1 if r, =0. Again note that the local structure of the hot spot, once it
develops, is independent of the influence of the vortex and so is diffusion controlled. We are currently
investigating the future time development of the hot spot, and the subsequent flame development.

4. DIFFUSION FLAME REGIME

Typically, a diffusion flame is characterized by a chemical reaction time that is much smaller than a
charactenistic diffusion time. Chemical reactions then occur in a narrow zone between the fuel and the oxi-
dizer, where the concentrations of both reactants are very small. Mathematically, the assumption of very fast
chemical reaction rates leads to the limit of infinite Damkohler number which reduces the diffusion flame to
a flame sheet (i.e., local chemical equilibrium). This assumption significantly reduces the complexity of the
problem since it eliminates the analysis associated with the chemical kinetics. For many flows, the assump-
tion of local chemical equilibrium adequately predicts the location and the shape of the diffusion flame
(Buckmaster and Ludford, 1982; Williams, 1985). Since the flame sheet model is amenable to analysis, we
give its structure below. For finite values of the Damkohler number, equations (2.1) must be solved numeri-
cally and this is done in the next section.

We begin the analysis of the diffusion flame regime by defining the following conserved variables
(see, e.g.; Williams, 1985):

T+BF=Br+(1-Br+PZ, 4.n

T +BFy=PBr+Bo™ +(1-Pr-Bo2z, ' (4.2)

Fi—F,+¢7!
P )

o 4.3)
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where Z is the mixture mass fraction and satisfies the convection-diffusion equation

z, + B3C 11— exp(-r2141 )1 2o = V22, (4.4)
r

subject to the initial and boundary conditions

Z=1 at 1=0,r>00<6<m and 1>0,7 > 0<b<m, ' (4.5a)

Z=0 at 1=0,r>0,m<0<2m and  >0,7r oo, m<B<2m (4.5b)

In the limit of infinite Damkohler number the flame sheet solution is given by

Fi=1-0 + oA - 2), F,=0, (4.6a)
T=PBp +Bo+(1-Br-BoHZ, (4.6b)
valid for Z > Z;, and
F,=0, Fo=¢'-(+0¢MHZ, 4.7a)
T=Br+1-Br+P)Z, (4.70)

vahdfor Z < Zf . ﬁHe’re,' Zf defines the location of the flame sheet where both the reactants vanish, given by

~the implicit relation

1 - R -
Z = T+ o - (4.8a)
gmi T tai(ersﬁtgé;;diéggﬁigﬁﬂame value . e
1+ Bro+B A
= —— 4.
Ty T+ o (4.8b)

Note that the flame location is independent of B; and B. Once Z = Z(r,8,t) is known, then the other vari-
ables (T ,F,F,) can be found from (4.6)-(4.7). s

As discussed in the Introduction, equation (4.4) for Z has been solved numerically by Laverdant and
Candel (1988) and Rehm, Baum, Lozier and Aronson (1989). Our goal is not the numerical solution of
(4.4). Rather, we propose in the following subsections a simple model problem describing the viscous core
center in a region about the flame sheet, with the goal of identifying certain physical effects by employing

asymptotic expansions.
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4.1. LOCAL ANALYSIS ABOUT FLAME SHEET

In this section we formulate a model problem describing the effect of the vortex in a neighborhood
about the flame sheet. Assume at time ¢ = 0 a flame sheet exists at y;. In the absence of a vortex, the mix-
ture mass fraction evolves according to (4.4) with R = 0, and the analytical solution can be written in terms
of an error function. At any instantaneous time f,, the solution across the flame sheet is easily seen t0 be a
linear shear profile (Figure 8), given by

Z.0.0)= 5 + 400 -y ) @9

which is only the first-order Taylor series expansion of the mixture mass fraction profile Z about the flame
sheet location y,, found implicitly by (4.8a). Here, the prime denotes differentiation with respect to y. The
model problem assumes that the time scale associated with the vortex is faster than that of diffusion, so that
on this time scale the linear profile (4.9) can be considered steady. In addition, we assume that the flame
sheet resides close to the origin. Thus the following scales can be introduced

t=1, +el, y=vEy, r=VEr, o=1+ed, z=%+«l€z‘, 4.10)
with € << 1, and the vortex is turned on at time £ = 0. With these scalings the linear shear profile, in terms
of Z, becomes

-

Z‘(f,e,0)=—% +Zi) [P =9, = ky +kaJ . (4.11)

Note that k; = —§/4 — Zf' (t,) ¥y (t,) measures the instantaneous deviation of Z from its stoichiometric value
Zr=1/2 a f =0, and ko= Zf' (t,) measures the instantancous gradient of the mixture mass fraction across
the flame sheet. The convection-diffusion equation (4.4) in terms of the perturbation mixture mass fraction
Z becomes

Z; + Rﬂfc [1-exp(—7%/41 5c)1Zg = V22, (4.12)
r

where V2 is the Laplacian operator in the transformed plane. The perturbation equation (4.12) is to be
solved subject to the initial and boundary condition given by the linear shear profile (4.11).

To examine the time evolution of the flame sheet about the origin when the vortex is present, we
define

Z(F,0,0) =k, + k,[Fsin0 + Z(7,0,0)], (4.13)

where Z is the disturbed mass fraction due to the presence of the vortex. Upon substituting (4.13) into
(4.12), we find that Z satisfies the convection-diffusion equation
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Y41 85c)] (Feos® + Zg) = V2 Z, 4.14)

1

subject to homogeneous initial and boundary conditions. Note that (4.14) is non-homogeneous, and hence

does not have a similarity solution. Here, we introduce the variable

-t 4.15
= (4.15)

which is the similarity variable in the absence of the vortex, so that Z-=7(s,0,1). In the transformed plane
Z satisfies

- exp(—s2/4sc)] (s V7 cos® + Zg) = 27, 4.16)

This equation is separable in space and time and hence has the simple analytical solution

Z =7 [Z, (s)cosB + Z, (s)sinB], @.17)
where
%(z‘¢ _s2)+ RTSC- [ = exp(=s248c)(Z, +5) =2 l%’z‘;- ;liz‘e . @a18)
%(20—52') R3¢ 11— exp(- 5145012, +% “J-ﬁl"o. (4.19)
subject to the boundary conditions
2,0) =2, (0) =2, (=) = Z, (=) = 0. ' (4.20)

Here, primes denote ordinary differentiation with respect to the similarity variable s, Z, is the amplitude of

the even mode, and Zo is the amplitude of the odd mode. Note that the above solution is valid for all times

and vortex Reynolds numbers.
The system (4.18-4.19) subjecrtrto (4.20) was solved numerically using a 2nd-order finite difference
scheme with an approprlate stretching in s. The soluuon to [hlS system for a range of vortex Reynolds

numbers is given in Figure 9. As the vortex Reynolds number increases, the number of oscillations in each
of the components Z, and Z, also increases while moving away from the origin, thus establishing a core

_region. The composite solution (4.13) is plotted in Figure 10 for {=10=%n/2,k,=1, k; =0, and

Sc = 1. From this figure the extent of the core region is seen to grow as R increases, and this core, once
established, grows like \[r (see (4.17)) as noted prev1ously by Marble (1985).
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4.2, LARGE TIME BEHAVIOUR

To investigate the local structute of the model problem described in the previous section for large
times, let { — oo, s0 that s — O for fixed 7. Hence from (4.17) we have

Z = lim VI [Z,(s)cos 6 + Z,(s)sin0]

foroo

= lim %[z‘,(s)cose +2,(s)sin0)
= lim = (Z(s)% + Z,(5)7 ]
=a, % +b1}"‘, (421)

where from (4.18) and (4.19) it is easy to show that the asymptotic behaviour as s — 0 is
Z,=ays +0(s%), Z, =bys +0(s%). (4.22)
Here, a, and b, are to be found numerically. Substituting (4.22) into (4.13) yields
Z=k +kyla 8+ (1+b)F1]. (4.23)

Comparing (4.23) 10 (4.11), the effect of the vortex is seen to establish a new equilibrium mixture mass
fraction profile within the core region.

Another quantity of interest is the magnitude of the gradient of the mixture mass fraction, defined as

2 23172
_[[2z), [ 2z
G—[[ax}+[ayJJ . “4.24)

Note that G is a function of R, ¢ and Sc. Substituting (4.23) into (4.24), we see that the magnitude of the
gradient in the center of the core is given by

12
G =|k,| [012 +(1 +b1)2] ”. (4.25)

Figure 11 is a plot of G versus R for Sc = ¢ =k, =1. Note that as R — e, G — 0 which implies that
there are no gradients within the center of the core, and hence no diffusion across it. Thus, the core is com-
pletely established. From this figure it is clear that the core is 95% established at R = 50. This is in agree-
ment with Figure 10 where a well defined core is clearly visible at R = 100.
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4.3. LARGE VORTEX REYNOLDS NUMBER ASYMPTOTICS

To investigate the local structure of the model problem described in Section 4.1 at large vortex Rey-

nolds numbers with R >> 1, we begin with the equation
= 1 2 A 1 ens
Z + = [1 —exp(—R 72 141)]Zg = SC—RV Z, 4.26)

which is (4.12) with 7 scaled as 7 = 7VSc R . The above equation is solved subject to the initial and boun-
dary conditions

Z =k, +kyJ at 1>0,F 50, 0<0<2m and 1 =0,F>0,0<0<2m. 4.27)

OUTER INVISCID SOLUTION -- Z°

In the limit R —> oo, an outer inviscid region exists and is governed by the following inviscid version of
(4.26),

70+ Lz9-0 (4.28)

where 72 denotes the mixture mass fraction in the outer inviscid region. This equation is valid for
F=0(1) and { <« O(R), so that the effect of a potential ling vortex or an Oseen vortex is the same. The
solution is easily found by the method of characteristics and is given by

7%=k, + k, Fsin@g, (4.29)
where 8, is the characteristic
8o=0 - __‘? (4.30)
7

INNER SOLUTION - Z*

As 7 — 0, the solufion (4.29) becomes singular so the viscous terms in (4.26) must be retained. We intro-

duce the similarity type variable

UL G0 RN ]
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5= —L 4.31)

where 8 << 1 and will be chosen in the course of the analysis. Defining Z' to be the inner variable, and
expanding

Z' =k, + ko VST Z(s,0), 4.32)

we see that Z satisfies the convection-diffusion equation

ViZ. 4.33)

w(Z-sZ)+ é [1 - exp(~R 8524126 = 55—

To facilitate matching with the outer inviscid solution (4.29), we change to a new (non-orthogonal) coordi-
nate system in which the characteristic 8 is one of the coordinates. Thus, the above equation in terms of s
and 0, becomes

“(Z-52)- gl;;exx)(—k 85214) 2,
2
1t e, 2 2 afe, 2 2| 12|,
T 8ScR {[ s ' 350 aeo} + [ s T Bs? 90, ] + 3 367 }(2). (4.34)

To balance both sides we must choose

1 1
1= 3RS o @39
or, in terms of §,
8=(R Sc)™3. (4.36)

For this scaling, exp(—R §52/4) is exponentially small in the limit R — oo, and so again the effect of a
potential line vortex or an Oseen vortex is the same. The leading order equation in a 3-expansion is given

by

w(Z -s52)= ':7 Zo0,. 4.37)

This equation can be solved by separation of variables and, after matching with the outer solution (4.29), the
solution is found to be

7 =sexp [ 5‘—‘% } sin 8. (4.38)
S
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The inner viscous solution is now given by

Z' =k +ky s VI exp [ —3‘—47 ] sin B, (4.39)
S
" COMPOSITE SOLUTION )
The composite solution
- —4(51) ;
Z=k1+kgi"exp[——i3i_8—gt-)—]sin[6—:t2—], (4.40)
r r

is valid for times [ << &', Figure 12 displays the composite solution Z versus s for © = x1t/2, with
ky=05,k;=1,8=0.05, and { = 1. Note the agreement with the numerical solution given in Figure 10.

The magnitude of the gradient of the mixture mass fraction can be obtained by substituting (4.40) into
(4.24). Then as & — 0, the leading order result yiclds

20k, | '
G =
8s?

-4 1
xp[ 336 }lCOS(Q - —8?)‘ . (4.41)

Figure 13isa E)l(;t of G versus s for 8 = 1:/“2',7 k, =1, and & = 1/10. Note that the maximum amplification
is about 87!, The limit R — O corresponds to G — 0, and so the large spikes have been created by the vor-

tex. .

The core radius growth can be determined from (4.31) and (4.36), and is found to be

T = constant, (4.42)

V(Re Sc )'”73 t

or, in terms of dimensional quantities (denoted by stars),

L

r

——————— = COnstant. (4.43)
This is the main result of Marble (1985), who showed constant = 0.5092 + o(D"/ ir ). Finally, we note
from (4.43) that the spreading of the viscous core due to the vortex field is (I”" /D" )? times as large as
that obtained from diffusion alone in the absence of the vortex, as previously pointed out by Marble (1985)
and Karagozian and Marble (1986).
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5. NUMERICAL SOLUTION

In this section we present selected numerical results to the full system (2.1) subject to (2.2). This sys-
tem was solved by a standard finite difference scheme, as previously described in Section 3. To illustrate the
numerical solution of (2.1-2.2) of the continuous evolution from nearly frozen flow to near equilibrium flow,
we produce here one result corresponding to the case Sc = ¢ = 1, R =28, Ze = 30, Da =¢*°/30, B =1,
and By = 1 - 2/30. This case corresponds to the asymptotic results of Section 3 as displayed in Figures 3-
6. Figure 14a is a plot of the time slices of the temperature profile T, while Figure 14b is a plot of the time
slices of the reaction rate term Q. Time increases from the bottom left comer to the top right corner. In
Figure 14a, a hot spot develops initially within the viscous core (frame 1) and rapidly develops into an iso-
lated, almost circular flame which grows as time increases (frames 2-8). At a later time (frame 7) two
diffusion flames are clearly visible at the edges of the plot, and as time increases further (frame 8) they
move towards the viscous core. Eventually the two diffusion flames will merge with the expanding, almost
circular flame located in the viscous core region. Figure 14b shows corresponding results for the reaction
rate term. Initially (frame 1) a single isolated point in the rate term is visible. As time increases (frames 2-
8) this single point develops into an almost circular ring and spreads in time, leaving within it the bumnt
core. The reaction rates of the two diffusion flames are given in frames (7-8).

6. CONCLUSIONS

The distortion of flames in flows with vortical motion has been examined by means of asymptotic
analysis and numerical simulation. The model consisted of a constant-density, one-step, irreversible
Arrhenius reaction between initially unmixed species occupying adjacent half-planes which were then
allowed to mix and react in the presence of a vortex. The continuous evolution of the temperature and mass
fraction fields from initially unmixed to near equilibrium flow was followed. Emphasis was placed on the
ignition time and location as a function of vortex Reynolds number and initial temperature differences of
the reacting species. In the ignition regime, the case of near equal initial temperatures was considered. The
effect of increasing the initial temperature ratio By slightly from unity was to enhance ignition for any fixed
vortex Reynolds number R, while decreasing B, slightly from unity had the opposite effect. However, for
fixed Pr, increasing the vortex Reynolds number from zero had little effect on the overall ignition time. The
ignition location occurred in the region of the initially hotter reactant for small R, and was seen to spiral
clockwise towards the viscous core center as R increases. Finally, numerical solutions of the ignition equa-
tions indicated that the hot spot was both axisymmetric and diffusion controlled for any non-zero vortex
Reynolds number. Thus, the asymptotic analysis of Dold (1985, 1989) could be used in describing this local
structure. The case of different initial temperatures, and the future time development of the hot spot, will be
considered in a future manuscript.

In the diffusion flame regime, a simple model problem was proposed to investigate the effect of the
vortex on the flame sheet. The model consisted of assuming that the time scale of the vortex was faster than
that of diffusion alone, so that on this time scale appropriate asymptotic expansions were used in describing
the interaction about the flame sheet. This model problem allowed for the full vortex flow field without
making the strain-shear approximation of Marble (1985). Many of the conclusions of Marble (1985) were
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verified, including the similarity rule for the core radius growth in the limit of large voriex Reynolds

number.
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Table I. IGNITION TIMES forR =0

|

Br=-10 Br=-2 Br=0
present study 54.912 13.146 5.813
Linan‘& Crespo 5523 13.i4 5.81
Table I1. IGNITION ’I‘IMES vs VORTEX REYNOLDS NUMBER (R)
R Br=-2 Br=0 Br=2
0 13.148 5816 1.779
5 12.659 | 5.632 1.714
10 11.881 5278 1.6094
20 11.378 4793 1.541
30 11.559 4,586 1.566
40 11.680 4.443 1.582
50 11.659 4362 1.580
60 11.598 4314 1.572
70 11.535 4313 i.570
80 11 .4‘80 4286 1.582
90 11436 4265 1.577
100 11.398 4231 1.545
200 1 1:.203 4.162 1.544
300 711.122 | 4.128 | 1,533
400 11.075 4,108 1.516
500 11.044 4.095 1.506
1000 10.960 4.067 | 1.506
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Figure 1. Plot of the ignition time I, versus voriex Reynolds number R for Sc=¢ = 1 and (a) Br=-2
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Figure 4. Contour plot of T, for ﬁ‘-= -2, S8 =¢=1and (a8 R=5, (b) R=20, (¢c) R=28, and (d)
R = 100.
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Figure 5. Contour plot of F, | for By=-2, Sc=¢ =1 and (a) R=5, (b) R =20, (¢) R =28, and (d)
R = 100
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Figure 7. Plot of the ignition locations Yig versus x,, for various values of e voriex Reynolds number
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Figure 8. Schematic showing the assumed instantancous flow ficld.
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